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NUMERICAL EVALUATION OF THE FAR FIELD WAVE PATTERN
OF THE RADIATION GREEN'S FUNCTION

1. INTRODUCTION

The rncthod of Green's functicns iz widely used to analyzc the flow arcund =urfacc ship -,11s.
If one neglects very short waves, such that surface tension and viscosity effects may be neglected,
these functions represent potentials of point sources which are chosen to satisfy all the required condi-
tions of the problem with the exception of the kinematic condition of no flow through the ship hull.
This latter condition, in turn is used to determine the strengths of the sources which are placed on the
hull surface.

A critical step in this procedure is the efficient evaluation of the near field behavior of the
Green's function to determine the mutual influence of the sources. Once these influences have been
determined, the problem reduces to a system of simultaneous linear equations for the source strengths.
The near field behavior is also of interest in obtaining the pressure distribution on the hull surface, as
well as the bow wave in such applications as slamming and deck wetness.

The far field analysis is often used to obtain the damping and resistance forces due to the waves
generated by the motions of the ship. This usually leads to a more accurate determination than the
direct integration of the hull pressure distribution due to the greater simplicity and higher resolution of
the far field analysis. More recently, with the advent of more accurate remote sensing techniques, the
far field wave pattern is also of interest from the detection point of view.

The three most widely used Green's functions, listed in increasing order of complexity, are the
ring wave (or zero speed) function for an oscillating stationary source, the Kelvin (or wave resistance)
function for a nonoscillating translating , : -C, and the general case of the radiation (or ship motions)
function for an oscillating translating source. ' or the simple ring wave case, Liu [1] derived near and
far field solutions as early as 1952. This _ le case is characterized by the fact that there is exactly
one wave at each field point and in the far field these waves form circular rings around the source.
More recently, Grekas and Delhommeau [2] show that in the case of low speed the far field ring
waves have elliptic shape. The far field wave pattern of the Kelvin source has been widely studied
since this gives rise to wave resistance, the drag component which may be most significantly reduced
by suitable ship design. It is well known that there are two waves (transverse and divergent) inside a
triangular region behind the ship, with a half angle of 19.47'. The various far field approaches are
summarized in the classical paper by Eggers, Sharma, and Ward [3]. It is only in recent years that
Newman [4], and Wang and Rogers [5] have derived efficient computational schemes for the near
field flow.

For the general radiation case, where the source is both oscillating and translating, efficient
robust computational schemes for the near field flow appear to be lacking. A notable exception may
be the work by Chang [6]. In the far field case, Newman [7] has outlined a computational approach
for obtaining the wave pattern. This report presents a numerical implementation of this formulation.
First, a brief description of the derivation of the far field expressions is given. Next, various aspects
of carrying out their numerical evaluation are described in some detai. These include an efficient
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iterative scheme for finding the wave propagation directions at a given field point, the treatment of
singular points and lines in the formulation, a grid filtering technique to eliminate short waves which
appear as noise, and an efficient method of extending the procedure for a single source to a line of
sources which may be taken to represent the ship hull in the far field. Expressions are developed for
the values of the Green's function and its slopes, as well as for the associated wave elevation and its
slopes. Numerical results are presented in the form of computer generated three-dimensional and
contour plots for various cases of a single source and a line of sources. These figures show in
particular, the differences between the pattern of the Green's function and the wave elevation,
between the functions (Green and elevation) and their slopes, and between the wave elevations due to
a single source and a line of sources modeling heave (linear vertical oscillatory motion) and pitch
(rotational osciatory motion in the vertical centerplane). The report concludes with a summary of
the calculation procedure and the numerical results.

2. DESCRIPTION OF FAR FIELD FORMULATION

For the sake of uniformity, the present report will consistently follow the coordinate system and
notation used in [7]. This coordinate system is shown in Fig. 1, and corresponds to the source at rest
in the presence of a current c in the -x direction, which is equivalent to the source traveling at
speed c in the +x direction. The y axis corresponds to the horizontal direction perpendicular to x,
and the z axis is directed vertically upwards.

2.1 Derivation of Far Field Formulas for Values of G 11 for Single Source

Assume that the Green's function G is expressed in the form

G(x,y,z;t,ii, ;t) = RefGll(x,y,z;,rjr)e ' j

where x ,y ,z and t,, are respectively the coordinates of the field point and source shown in Fig. 1,
t is time, and w is the circular frequency of oscillation. In the above equation and in the remainder

of this report, only the real part of the complex expression is of interest and, for the sake of conveni-

ence, the symbol Re will be omitted hereafter. Gil must satisfy the following conditions

V2Gil = 0; z < 0; (x,y,z) * (01S) (2a)

2 G - 2iWC + c2a 2 G 11  8G =0

ax + ax2  +g- z -- 0 (2b)

aGl 1
lim = 0 (2c)

lim VG =0 (2d)
R-oo

In addition, a radiation condition of no incoming waves at R - is needed to ensure uniqueness of
the solution. Using the Fourier transform approach, Gil is given by

_ 1 1
G l + F , + F2 

+ F 3  (3)
r r-
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where r = [(x- )2 + (y - Q)2 + (z - -)2 ]1/ 2 , r' = [(x - t)2 + (y - 17)2 + (z + n211/2,

F1, F2 , F3 are double integrals of the complex wavenumber X and the real wave propagation direction
U.

Th- analysis is considerably simplified by neglecting terms which are of order I/R or higher,
where R is related to x and y by

R = (x 2 + V2)1/2 (4a)

x = R cos 0 (4b)

y = R sin0 (4c)

0 = tan -(y/x) (4d)

In the above, 0 is the spatial direction. By using the calculus of residues and the method of stationary
phase on the double integals F1, F 2, and F 3 , the following algebraic expression for the far field
values of G I, is obtained

GII(R,8,z; , 8 J 1/ 2  sign(cos u) [× sin2  o 112

U ~sin 2 u U --Cos (u - 0)

exp i(u)[z + + iR cos (u - 0) - i cos u - i7 sin u] + + sign I (5)

The wavenumber Xi (u)(i = 1,2) is given by

Xi = 2r2 Pcos2  [1 + 2rcosu + (1 + 4,cosu)1/ 21 (6)

where the upper sign is used for i = 1 and the lower sign for i = 2, T = oc/g, v = o 2/g, g is the
gravity constant, and the function gi (u) is given by

g "= Xi Cos (U - 0) (7)

Equation (5) is to be summed over the values of u which give agi iau = 0. This in turn gives rise to
the following transcendental u - 0 equation

ctnO 0 tan u + (I + 4TCOSu) (8)
sin u cos u
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where u is in the interval -ir ___ u _s 0 - r/2, and again the upper and lower signs are to be used
for i = 1 and 2, respectively. Fig. 2, which corresponds to Fig. 1 of Ref. [7], shows plots of the
above equation for various values of the parameter r. The diagonal line connecting the points
(0 = 0, u = -r/2) and (0 = ,-,u = 7r/2) represents the upper limit of permissible values of u.
This figure shows that there may be anywhere from zero to 5 roots, depending on 0 and T.

2.2 Limiting Cases of r - 0.

Since the above formulation is for a translating oscillating source, it should contain in the limit
of values of T(=cw/g) - 0 the ring wave case for c - 0 and the Kelvin wave case for W - 0.

The ring wave case is recovered by taking the lower sign in Eq. (6), setting r cos u = E, and
expanding the square root term to second power in c resulting in

X2 = -P I + 2E I + ±E (4e )2 2 2=2 9

2E2 f 228j 2  =

which is precisely the wavenumber of the zero speed case. The Kelvin waves may be recovered by
taking the upper sign in Eq. (6), noting that v/r 2 = W2g21c2W2 = g 2/c2 gives the fundamental
wavenumber Xc of the Kelvin waves, once again setting T cos u = c, and expanding the square root
term to first power in E, resulting in

X, = XC I + 2E + 1(2 +, , -- 0 (10)

2 cos 2 u 12Ji 2 cos 2 u CO (2 u

The term Xc /cos2 u gives the precise variation of the wavelengths of the Kelvin wake with wave pro-

pagation direction u.

2.3 Derivatives of the Green's Function

Often it is of interest to determine not only the values of the Green's function but also its x and
y derivatives. In the case of damping force and remote detection applications, it is not the Green's
function itself but the associated wave elevation and slopes which are of principal interest. All of
these derivative quantities may be conveniently obtained from the formula for Gi given in Eq. (5).

Recalling that this equation is a far field expression for large values of R, the operations
a/ax = a/a(R cos 0) and lay = a/8(R sin 0) would add a power of I/R to most terms in Eq. (5).
The only term for which this is not the case involves the exponential function

L, a Iexp [XiiR cos (u - 0)] = b  [Xi i(xcosu +ysinu)] (11)

for which the derivatives a/dx and a/dy are equivalent to multiplying the function by ji Cos u and

iXi sin u, respectively. Thus, the x and y derivatives of G,1 are simply given by

ax i cos u Gl i
(12a)
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_____ 18rI (12b

G"-" =1/ 1 iX, sin u G (12b)

where GI1 i refers to the entire expression after the summation sign in Eq. (5). The elevation z, of

the wave pattern for the present case of an oscillating source in the presence of a current c in the -x
direction, shown in Fig. 1, is given by

1 - IIG I 7 1/2

.s =E"it C aX 8w- - cX i cos u)GI i  (13)

9 tax RJ g

The x and y slopes are then obtained similar to Eqs. (12)

az, _" F ) ] 1/2

ax L'J . -i iX i cos u(w - cXi cos u) GIIi  (14a)

K]1/2
___ -1i i i sin u(wo - cXi cos u) G 1ii  (14b)
ay g

2.4 Extt;nsion to Multiple Sources

The straightforward way of evaluating the Green's function for a series of N sources with
strengths Qj and locations j ,ib ,j) is to repeat the calculation of Eq. (5) N times and sum over the
results. Actually, as a result of the far field assumptions inherent in Eq. (5), the computational effort
for N sources differs very little from that for one source. Most of the computational effort in

evaluating Gil occurs in the iterative search for the various u-roots of Eq. (8) for a given value of 0.
Eq. (5) shows, however, that 0 and R are always measured from the origin even though the source
may be located at (,i,-). This assumption is possible since R >> (,]-). Thus, only the exponen-

tial term exp[Xi(u)[ - i cos u - ii1 sin ull varies for the different sources. The term Xi" gives
the decrease in the strength of the source due to submergence " below the free surface while the term
-i E cos u - it1 sin u gives the shift in the phase of the wave originating from (Q,'7) relative to the
wave due to a source located at (0,0).

A particularly useful configuration for modeling ship hulls in the far field is a line of N sources
with the same values of 71 and ", but different values of Qj and tj. In this case, the value of G at a

given field point (x ,y ,z) is given by the following double sum

RJ sin2 u I cos (u - 0)1

du

exp [z + + iR cos (u - 0)- i 1 sin u] + + sign x

2 -au2 4
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Qiexp (-i cos u) (15)
J=i

Similar expressions hold for extendiiag the derivatives of G1 1 , the elevation z, and its slopes for a sin-
gle source, given in Eqs. (12) to (14), to a line of sources.

3. COMPUTER IMPLEMENTATION OF THEORETICAL FORMULATION

The preceding formulation has been numerically implemented in the form of the FORTRAN 77
computer program RADGREEN. The present chapter describes the more complex or novel aspects
of the implementation. Input, output, and computer time requirements of the program are also
described to give an indication of actual usage.

3.1 Iterative Solution for Wave Propagation Direction

The most time consuming part of the procedure is the finding of the zero to five values of u
which correspond to a given value of 0 in Eq. (8). The solution scheme essentially consists of a glo-
bal search to bracket the root values of u within certain bounds, and then a localized search to pin-
point the precise values.

The global scheme is contained in subroutine FINROOT, which evaluates the error functions f1
and f2 (for given values of 0 and r) for 721 equally spaced values of u between - 180 and 0 degrees.
The error functions fI and f2 are defined as the difference between the left and right sides of Eq. (8)
using the upper (X1 case) and lower (X2 case) signs, respectively. Where the function changes sign
between two adjacent values of u, indicating a zero crossing and hence the location of a root, these
values of u are identified and saved as initial bounds for a more precise determination by subroutine
FRI. This subroutine closes in on the value of the root by an interval halving technique where the
error function is c,,Iuated at the riidpoint between the bounds, and then moving the bound with the
same sign of the error function to the midpoint. This iterative procedure is continued until the error
function has an absolute value less than 10-6. The resulting value of u and the associated
wavenumber case (XI or X2) are then returned to the main program for use in Eq. (5).

3.2 Treatment of Singular Points and Lines

Perhaps the most obvious indication that Eq. (5) is for the far field is the factor 1/N, which
- cc as R - 0. Where calculations are desired for field points relatively close to the origin, the pro-
gram provides the option for the user to input a minimum bound on values of R to be used in Eq.
(5). For the zero speed case, Liu [1] shows that the far field formulation becomes valid for
R a 0.3 12, where 12 is the wavelength and is related to the wavenumber X2 given in Eq. (9) by

12 = 27 = 2w (16)X2 W 2

Eq. (5) shows that the factor contained within brackets may be singular at values of 0 where
sin u = 0, cos (u - 0) = 0, dO/du = 0, and (due to Eq. (6) for Xi) cos u = 0. Actually, the
singularities due to sin u and cos u are completely removable while the behavior at cos (u - 0) - 0
is also regular. Thus, only the case dO/du = 0 is an actual singularity in the calculation.

6



The removable nature of the singularities for sin u and cos u may best be illustrated by explicity
writing out dO/du obtained by differentiating Eq. (8) with respect to u, resulting in

du 2 sin20 [sin 2 u (-2rsinu)sinu cos u/ 1 + 4rcosudu sin: u Cos" u

*(-l)V + 4rcosu cos2u] (17)

It is seen that the factors sin2 0/sin2 u and I/cos2 u are cancelled by corresponding factors in Eqs.
(5) and (6). Thus, Eq. (5] is entirely free of singularities in terms of possible zeroes of sin u and
Cos U.

The regular behavior at cos (u - 0) - 0 may be seen by noting that this implies (since
u - 0 = I2 or 3r/2 in Eq. (8)) that

I + 4T cosu, = 0 (18)

and, from Eq. (6), that X1 = X2. From Fig. 2, and also by considering Eq. (17), it is seen that at
these values of u the slope du/dO = 0, so that the product cos(u - O)dO/duhas the indeterminate
behavior 0/0. Numerical calculations show thak the product has finite values, with resultant values of
the magnification factor u decreasing from 7.0 for 7 = 0.26 to 0.5 for r = 1.0, where ju is given by

sin2 0 (19)

sin2  u cos (u - 0)

Idu

The calculations show that the values of A vary relatively slowly with small changes in u away from
U,. Since !.he indeterminate behavior does not involve two factors which exactly cancel as in the pre-
vious cases of sin u and cos u, it is numerically necessary to give special treatment to this factor for
u near u,. This is implemented in the computer program by restricting u, for cases of T > 0.25 and
u < 0, to be at least 0.1 deg greater than u, i.e. u _> u, + 0.1 deg. To obtain the correct limiting
behavior, the values of 0 correspondi, to thi revised value of u must be obtained from Eq. (8) and
used in Eq. (5).

Figure 2 shows that for 0 near 180 deg, there may be two values of 0, 0., at which there is a
vertical tangent dO/du = 0. These are the so-called cusp lines which give rise to unbounded values
of G1l and also serve as bounding lines such that the waves are contained within the angular region
8C -5 0 5 180 deg. This singular behavior illustrates the limitations of the present method since
actual values of G11 are finite at the cusp lines and also extend outside these lines. Higher order
asymptotic methods, such as that of steepest descent, are currently under investigation to obtain more
accurate calculations of G11 on and near the cusp lines.

A particularly simple and well known case is obtained by setting Eq. (17) equal to 0, with r -

0, and taking the upper sign (XI case) resulting in the following equation for u,

tan 2 Uc = 1/2 c uc = 35.16 deg (20)

7



By substiture - mis equation in Eq. (8) the corresponding value of 0, is found to be

Oc = 180. - 19.47 = 160.53 deg (21)

This, of course, refers to the well known Kelvin waves for a nonoscillating translating ship for which
the transverse and divergent waves meet at the cusp line with propagation angle 35.16 deg and the
waves are confined within an angle at 19.47' to the -x axis. Since u > 0, these waves (located
above the u = 0 axis in Fig. 2) are propagating against the current (i.e., with the ship) while the
remaining waves (located below the u = 0 axis) are propagating with the current.

It is of interest to ascertain the manner of this singular behavior as u - u. for z = 0. The
close bunching of the different curves for the Kelvin like waves above the u 0 axis suggests that
this behavior may also be applicable for other values of r. The analysis consists of evaluating the
magnification factor u for small increments Au away from ut, i.e., evaluating Eq (19) with
u = uc + Au. Numerical evaluation of the subsequent expression shows that A varies approximately
as

pt = 13.5/Au (22)

where Au is expressed in degrees. For a number of reasons it is necessary to set an upper limit on A.
Besides possible numerical overflow problems, excessively large values near the cusp line would tend
to overwhelm the values elsewhere so that they would appear to be nearly zero in plots of the func-
tion. In the computer program the default value of u is set equal to 100. This corresponds to taking
Au = 0.135 deg in Eq. (22). Taking a lower value of j = 10, to give more prominence to off-cusp
values of G11, corresponds to a value Au = 1.35 deg.

3.3 Grid-Based Filtering of Short-Wavelength Noise

Figure 2 shows that the wavelengths change with 0 and, in general, a wide range of wavelengths
may be expected for an arbitrary x - y grid of field points. Those waves where lengths are shorter
than or comparable to the lengths Ax or Ay of the individual grid cell will show up as high frequency
noise. In order to remove this noisy behavior in plots of the wave field, the program omits calcula-
tions for wavenumbers Xi(i = 1,2) which exceed the maximum wavenumber XM (minimum
wavelength in) given by

XM = 2 (23)
n [in(Ax ,Ay )J

where n is the number of grid points used to model the minimum wavelength. The default value is
4. A higher value of n may be used to focus on only the longer waves, while a lower value of n
may be used to account for the shorter waves in spite of their possible noise-like appearance.

3.4 Description of Computer Programn

Program RADGREEN consists of a main program and the subroutines CPTIME, FINROOT,
FRI, and UNFORM. The main program accepts input data, performs various initializations, and car-
ries out the calculations given in Eqs. (4)-(15) for a rectangular x - v grid of field points. The
CPTIME subroutine keeps track of the actual CPU time used for the calculations. As mentioned pre-
viously, the subroutines FINROOT and FRI respectively perform global and local searches for the
roots u of Eq. (8). The subroutine UNFORM writes onto an unformatted output file the calculated

8



,ue of the Green's function G (or the wave elevation z,) and its slopes in a form suitable for
three-dimensional and contour plots.

Input data are entered by means of an input file which conforms to the following READ state-
ments.

READ (5,521) fdename

521 FORMAT (A30)
READ (5,*) '1, gcal, nom, nsr, ip:, wnp, rmf, fmumx
READ (5,*) (omga (m), m = 1, nom)
READ (5,*) lcol, krow, xO, xdel, yO, ydel, eta, zeta
DO 999 iom = 1, nom
READ (5,*) (qamp (m), m= 1, nsr)
READ (5,*) (qphd (in), m = 1, nsr)
READ (5,*) (qxi(m), m = 1, nsr)

The input variables are defined as follows:

1. filename is the output file onto which are written the calculated values.

2. vel is the current or ship speed c in ft/s.

3. gcal is a calculation indicator such that for gcal _>0.1, G11 is calculated; otherwise, z, is

calculated.

4. nom is the number of values of w to be considered, I s nom :_ 11.

5. nsr is the number of sources on the line 1 _< nsr _< 21.

6. ipr is an output indicator such that for ipr >_ 1 the calculated function (G11 ) or z, and its
slopes are written onto the output file; otherwise, only the function itself is written.

7. wnp is n, defined in Eq. (23), the number of grid points used to model the minimum
wavelength which will be considered in the calculations; entering wnp _< 0. triggers the
default value wnp = 4.

8. rmf is the multiplier to establish Rmin (the minimum value of R) to be used in Eq. (5)
where Rmj = rmf * min (Ax,Ay); if rmf is input _< 0., the default value rmf = 10. is

used.

9. fmumx is the maximum value of the magnification factor A, defined in Eq. (19); entering
fmumix _< 0. triggers the default value fmumx = 100.

10. omga (m) is the mth value of w in rad/s, 1 <_ m :_ nora.

11. lcol is the number of grid points in the x direction, I _s lcol _5 151.

12. krow is the number of grid points in the y direction, 1 :5 krow _< 151.

13. xO is the value of r in ft for the initial grid point.

9



14. xdel is the value of Ax in ft, the size of each grid cell in the x direction.

15. yO is the value of y in ft for the initial grid point.

16. ydel is the value of Av in ft, the size of each grid cell in the y direction.

17. eta is )? in ft, the Y value of the location of the line of sources.

18. zeta is " in ft, the z value of the location of the line of sources.

19., 20., 21. qamp (m), qphd (m), and qxi (m) are respectively the amplitude in ft3/s, the phase
in deg, and the x -location in ft of the mth source, 1 :s i _ nsr; repeat for each
new value of omga.

It should be emphasized that the singularity moderating factors rmf and fmumx, and the noise
suppression factor wnp, have been implemented mainly to enhance the smoothness and visibility of
overall plots of the calculated functional values. If such considerations are not of concern to the user,
and the actual values of Eq. (5) are desired, then simply enter arbitrarily small nonzero values for rmf
and ywp (such as 0.001) and a large value for fmumx (such as 9999).

Computer time at one field point for a single value of w depends largely on the given value of r.
Using the Hewlett Packard 9000, Model 550 minicomputer, CPU time typically decreases from 0.3
seconds for r = 0 to 0.2 seconds for r = 1. Corresponding total CPU time for the maximum grid
of 151 x 151 field points would vary between 115 and 75 minutes, approximately. Due to the
approach used in Eq. (15), the calculation time for a line of sources differs little from that for a single
source.

4. NUMERICAL RESULTS

A number of calculated results are presented to illustrate the capability of the program and the
types of wave patterns to be expected from a single source and a line of sources for different values
of the fundamental parameter 7 = cw/g. These results are presented in the form of three-dimensional
and contour plots. Most of the results are presented in the form of the wave elevation z, given by
Eq. (13). Some results are also presented for the Green's function itself, Eq. (5), as well as the
slopes defined by Eqs. (12) and (14).

By way of illustrating the symmetry properties about the x-axis, Figs. 3a, b, and c respectively
s. -. ample plots of the wave elevation zs, the x slope, and y slope for r = 0.125 for the square

-500 < x s 500 and -500 < y s 500. These figures show that the calculated results con-
die expected symmetry of z, and its x slope, and the antisymmetry of the y slope about y = 0,

w'ich .--ay be deduced from Eqs. (5), (13), and (14). Similar symmetry properties hold for the
Grtr'., . 'unction and its slopes.

In view of the above symmetry properties about y = 0, the remaining figures are shown only
for one side of y, 0 5 y _5 450 ft, and -450 s x < 450 ft, with Ax = Ay = 6 ft. The line of
sources is taken to be submerged 6 ft (" = - 6) and with y coordinate = 0 (77 = 0). Calculations
are performed for a single source with x coordinate = 0 ( = 0) and for 10 equally spaced sources
with - 135 s t - 135 ft. This line may be taken to be the far field representation of a ship with
draft 12 ft and length 300 ft. The strengths of the 10 sources are assumed to be either (a) equal or
(b) linearly proportional to the location of the source. Case (a) is an approximation to heave
motions where the ship oscillates in the z dircction, while case (b) is an approximation to pitch
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motions where the ship undergoes rotational oscillations about the y axis. The angular frequency w is
fixed at 0.805 rad/s, which is representative of Sea State 5 conditions.

To show the difference between the wave elevation z, and Green's function Gil cases, Figs. 4a,
b, and c respectively show contour plots of z,, az, lax, and dz, lay for r = 0.125, while Figs. 5a to c
show corresponding plots for G1i. These figures show that the differences are relatively small.

Figures 6a to f show three-dimensional plots of z, for the heave case for ship velocity c = 0.2,
5.0, 9.8, 10.2, 20.0, and 40.0 ft/s which correspond to r = 0.005, 0.125, 0.245, 0.255, 0.5, and
1.0. The highest speed may be considered representative of the design speed. These figures show
how the wave pattern changes from ring waves to Kelvin type waves behind the ship as the velocity
increases. Also, the previously mentioned cusp lines, which correspond to values of 0 giving the
vertical tangents in Fig. 2, appear for values of r > 0.245.

To illustrate the effect of source distribution on the wave pattern, Figs. 7a, b, c respectively
show contour plots of z, for c = 0.2 (T = 0.005) for the single source, heave, and pitch motions,
while Figs. 8a to c show corresponding plots for c = 9.8 (r = 0.245). Figure 7a shows the
expected symmetry about x = 0 of the ring waves from a single source at this near zero value of c
Relative to the nearly circular waves of the single source, Fig. 7b shows that the heave motion tends
to concentrate the waves to the side of the ship (along the y axis) while the pitch motion tends to
gives the largest waves fore and aft of the ship (along the x axis). In the case of the the more com-
plex wave pattern for c = 9.8 (7 = 0.245), the single source and pitch cases give similar wave pat-
terns which are, in turn, more varied than those for the heave case.

5. SUMMARY

A previously formulated approach for calculating the far field behavior of the radiation Green's
function Gil, corresponding to a source which is translating and oscillating beneath the free surface,
has been numerically implemented in the form of computer program RADGREEN. Supplementary
expressions have been derived for the far field derivatives of Gil as well as for the associated wave
elevation and is derivatives. The program first uses a global scheme and then a localized scheme to
determine the wave propagation directions u for a given spatial angle 0 of the field point. It is shown
that the behavior is regular at several apparent singular values of 0 and u. However, at cusp lines
which correspond to locations of vertical tangents in Fig. 2, the function does become unbounded and
it is necessary to impose limits on the magnification of the waves at these points. It is also shown
that the grid filtering technique removes short wavelength noise by retaining only those waves which
have lengths equal to several cells of the computation grid. Calculation time on the HP 9000, Model
550 minicomputer for one field point varies from 0.3 seconds to 0.2 seconds, depending on the value
of the dimensionless parameter r = cwig.

A series of three-dimensional and contour plots are given to illustrate the capability of the pro-
gram and to give representative wave patterns for a single source and for a ship undergoing heave and
pitch motions. The heave and pitch motions are obtained by approximating the ship hull by a series
of 10 sources on a line with source strengths which are respectively equal to each other and propor-
tional to the longitudinal location of the source. These plots show that the program reproduces
expected symmetry properties about the x and y axes. There is relatively little difference between
contour plots of Gil and its derivatives and corresponding plots of z, and its derivatives. At low
speeds, relative to a single source, the wave pattern for heave motion tends to concentrate the waves
to the side of the ship while th,; pitch motion produces the largest waves fore and aft of the ship.

11



6. ACKNGWLEDGMENT

Contributions to several aspects of the numerical analysis were made by Mark F. Slaney and
Chris G. Tully, two outstanding students who participated in the Science and Engineering Apprentice-
ship Program. This work was conducted as part of a research program in free surface and marine
hydrodynamics supported by the Naval Research Laboratory.

7. REFERENCES

1. Liu, H.C., "Uber Die Entstehung von Ringwellen an einer Fliissigheitsoberfliche durch unter
dieser gelegene, kugelige periodische Quellensysteme," Zeitschrift fUr Angewandte Mathematik
und Mechanik, Vol. 32, pp. 221-226, July 1952.

2. Grekas, A. and Delhommeau, G., "Diffraction-radiation en presence d'un courant," Bulletin de
l'Association Technique Maritime et Agronajtique, Vol. 83, pp. 293-319, 1983.

3. Eggers, K.W.H., Sharma, S.D., and Ward, L.W., "An Assessment of Some Experimental
Methods for Determining the Wavemaking Characteristics of a Ship Form," Transactions of the
Society of Naval Architects and Marine Engineers, Vol. 75, pp. 112-157, November 1967.

4. Newman, J.N., "Evaluation of the Wave-Resistance Green Function: Part I - The Double
Integral," Journal of Ship Research, Vol. 31, No. 2, pp. 79-90, June 1987.

5. Wang, H.T. and Rogers, J.C.W., "Calculation of the Odd and Even Integral Components of
the Wave Resistance Green's Function," NRL Memorandum Report 6411 (in press).

6. Chang, M.S., "Computation of Three-Dimensional Ship-Motions with Forward Speed," The
Proceedings of the Second International Conference on Numerical Ship Hydrodynamics, pp.
124-135, September 1977.

7. Newman, J.N., "The Damping and Wave Resistance of a Pitching and Heaving Ship," Journal
of Ship Research, Vol. 3, No. 2, June 1959.

12



z

I 
Y

FREE SURFACE L FREE SURFACE

0

-- .- CURRENT c

* (x, y, z) Field Point

* (,7, ) Source Point

Fig. 1 - Definition of coordinate system

13



=0.2
0.01

_ i / / /, 7
7=0, 7=

r= 0.2///T,=0.4

r==0.86 0

7r/2 4-0.8 "

I / / /
II ii / I/ /I

Ill/I,,,

0.4I1//~T 
0.r10.

u/ / /111'

r00.2

r0.8

/ / / / 1
i I;

I//, /

/'l'l/ / I

_1' ... g'2=

/ *##

F 2 C s -0 - 0 Ei

14

r=74=02 ","

-- 2,",. 7 ,=.
-7r- #I

0,I , ,- 2{ "
0

Fig 2 Cuvesrepese Ting th u - 0, Eqato (8 r varou6vlus"f-

r=0.1. 14



Fig. 3a - Elevation z,

Fig. 3b - x -slope az, / ax

Fig. 3 - Sample three-dimensional plots of wave patterns, r =0. 125
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Fig. 3c - y-slope azi, lay

Fig. 3 - (Continued) Sample three-dimensional plots of wave patterns, r = 0.125
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J0

Fig. 4a - Elevation z,

Fig. 4 - Contour plots of wave elevation z, for single souce, r = 0.125
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Fig. 5a - Green's function G1

Fig. 5b - x -derivative aG11lax

Fig. 5 - Contour plots of Green's function G I for single source, 7 = 0. 125
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Fig. 5c - y-derivative 8)G1 1/8y

Fig. 5 - (Continued) Contour plots of Green's function G I for single source, r =0. 125

x

Fig. 6a - c = 0.2 ftls, T 0.005

Fig. 6 - Three-dimensional plots of heave wave elevation z,
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x

Fig. 6c - c = 9.8 ft/s, T 0.245

Fig. 6 - (Continued) Three-dimensional plots of heave wave elevation z,
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Fig. 6d - c = 10.2 ft/s, r =0.255

z x

Fig. 6e - c = 20.0 ft/s, r =0.5

x

Fig. 6f -c =40.0 ft/s, 7- 1.0

Fig. 6 - (Continued) Three-dimensional plots of heave wave elevation z,

21



Fig. 7a - Single source

Fig. 7b - Heave for line of sources

Fig. 7 - Contour plots of wave elevation z, c =0.2 ft/s, r =0.005
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Fig. 8b - Heave for line of sources

- i!

Fig. 8c - Pitch for line of sources

Fig. 8 - (Continued) Contour plots of wave elevation zs, c = 9.8 ft/s, r = 0.245
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